If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+x-162=0
a = 2; b = 1; c = -162;
Δ = b2-4ac
Δ = 12-4·2·(-162)
Δ = 1297
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{1297}}{2*2}=\frac{-1-\sqrt{1297}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{1297}}{2*2}=\frac{-1+\sqrt{1297}}{4} $
| 6m+3=8m−3 | | 7x+6=4x+2 | | 5^(2x-1)=7^x | | 2z-z=9 | | 6x²-6x+18=90 | | 12x-10=4x+3+2x | | 10+5q=11+q | | -10x-5x=0 | | 1x+2x=3x+4 | | 6y−(2y−4)=24 | | -4x+10=6x-50+10 | | -4(r=8)=-66 | | 5(x-13)=3x-43 | | -358=8x+40+2 | | 3(7x+6)=-2+10 | | 12(-3x+10)=10(2x-3) | | -6x+4=9-26 | | x/7+1/42=x/3 | | 1+x=(1+0.54)/12 | | N+-4=n+8 | | 9k=4 | | -8b+3b=7-6b | | 3x+4(4)=65 | | 6-7x-4=(-28)+3x+10 | | 7x-17=-3x+3 | | Y=1,5x+30 | | -21=-7(2x+1) | | 3/4(4x-8)=2/3(3x+6) | | 5(4n-10)-3=27 | | -6(5+2m)=-36 | | 3x-9-4x=-3 | | -189=4x-3(-4x+14) |